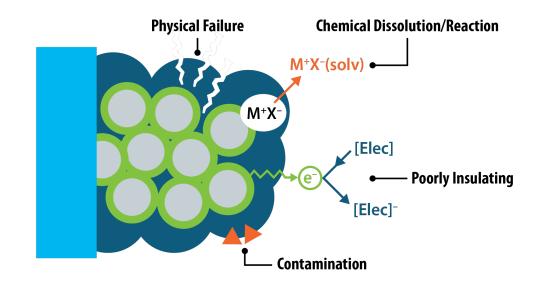
U.S. DEPARTMENT OF ENERGY'S (DOE)
VEHICLE TECHNOLOGIES OFFICE (VTO)
2020 ANNUAL MERIT REVIEW (AMR)


THE SILICON CONSORTIUM PROJECT

ADVANCED CHARACTERIZATION
OF THE SI/SEI/ELECTROLYTE INTERFACES
AND INTERPHASES

ROBERT KOSTECKI

Lawrence Berkeley National Laboratory

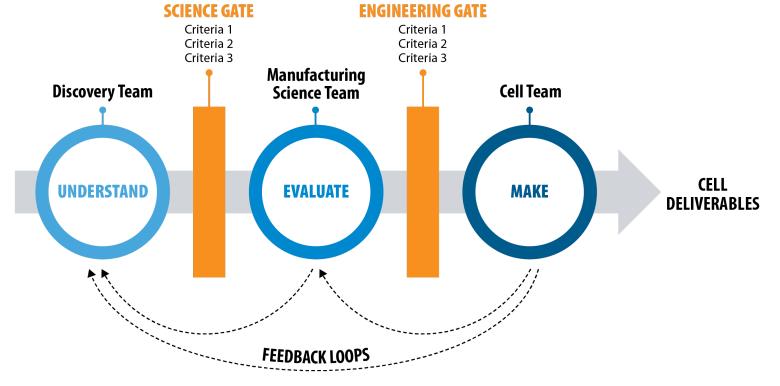
"This presentation does not contain any proprietary, confidential, or otherwise restricted information"

Poster ID: bat496

Presentation Date: 06/25/2021 Presentation Location: virtual

OVERVIEW

Timeline


- October 1st 2020 September 30st 2025.
- Percent complete: 10%

Budget

Funding for FY20: \$7500K

Barriers

- Development of PHEV and EV batteries that meet or exceed the DOE and USABC goals. Specifically targeting the development of calendar life in silicon anode.
 - Cost, Performance and Safety

OUTLINE

Timeline

- October 1st 2020 September 30st 2025.
- Percent complete: 10%

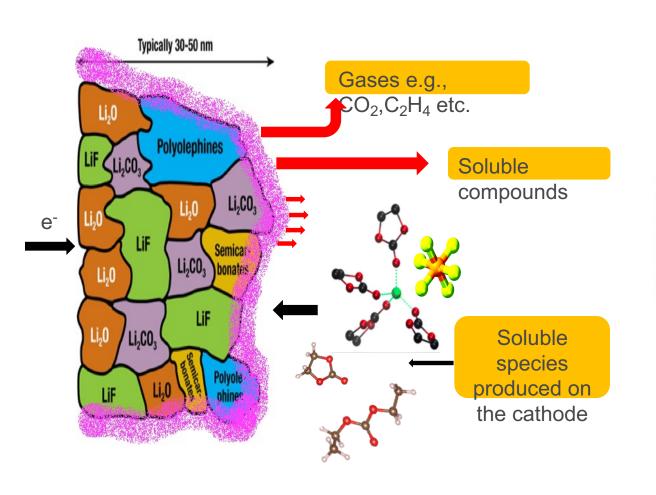
Budget

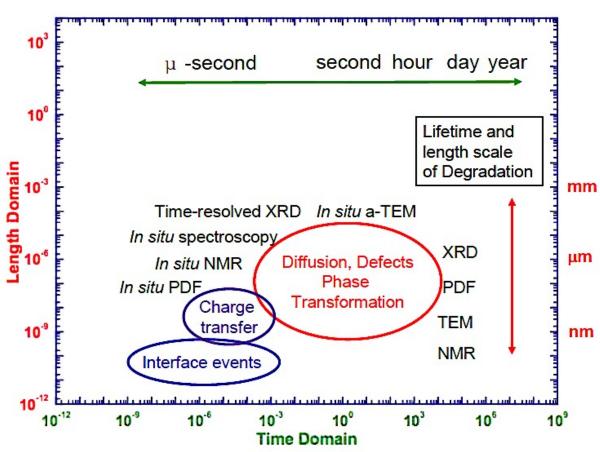
FY2021 funding: \$7500K

Barriers

- Development of PHEV and EV batteries that meet or exceed the DOE and USABC goals. Specifically targeting the development of calendar life in silicon anode.
- Cost, Performance and Safety

Research Thrusts


- Advanced characterization of the Si/SEI/electrolyte interfaces and interphases
- Electrochemical stability of the SEI
- Mechanical characterization of the SEI
- Next-generation materials discovery and development
- The science of manufacturing
- Cell manufacturing


MILESTONES

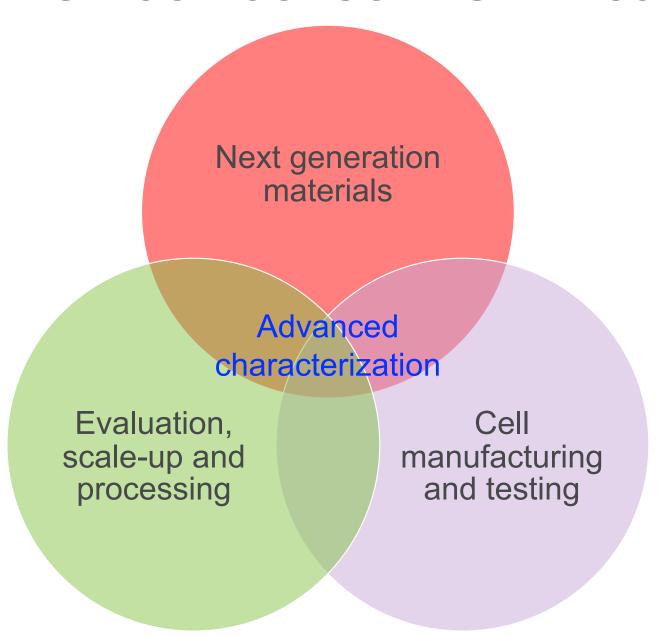
- Establish a pre-lithiation protocol that can be utilized by all partners Q1 (complete)
- Go/no-go on HF etching of silicon oxide-silicon as viable route to silicon Q2 (complete)
- Go/No go on the Moire interferometry at as a method of probing the calendar life of the silicon SEI? Q3 (complete)
- Produce 20 grams of next generation silicon's with at least two different coatings, at least one of which exhibits enhanced calendar life over the baseline commercial silicon (NRELcentric) Q4 (on schedule)
- Advanced version of the calendar life protocols that quantifies calendar life in silicon-based anodes within 20% of the "real" calendar life predictions of calendar life. Q4 (on schedule)
- Synthesis and testing of 5 different metallic glasses with theoretical capacities > 1000 mAh/g Q4 (on schedule)
- Identify active cell components and cell designs to achieve stable calendar life electrode performance with a cell build demonstrating 300 cycles with <20% capacity fade. Q4 (on schedule)

SI/SEI/ELECTROLYTE CHARACTERIZATION CHALLENGES

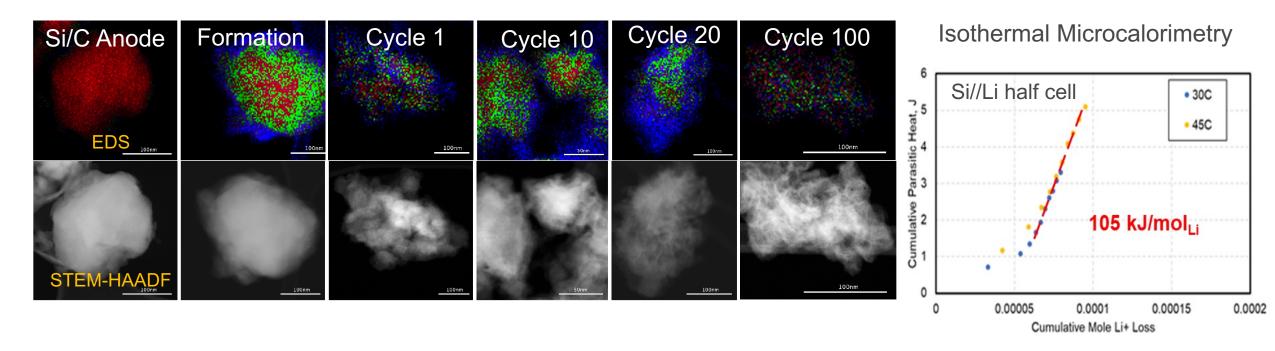
Intrinsic non-passivating behavior of Si anodes in organic carbonate electrolytes

SI/SEI/ELECTROLYTE CHARACTERIZATION CHALLENGES

Intrinsic non-passivating behavior of Si anodes in organic carbonate electrolytes


I. Correlate physico-chemical properties of interfaces and interphases with unstable electrochemical behavior of Si electrode

- Electrode surface reactivity vs. SEI layer composition and structure
 - Design and study model electrodes with tailored interfaces to control the kinetics i.e., rate and selectivity of interfacial processes
- Unveil hidden SEI layer components and structures
- Understand the mechanism of SEI layer operation and function
 - Formulate working hypothesis of the mass and charge transfer across the surface film
 - Develop methods to track Li⁺ in the film and electrode active material
- Investigate chemical cross-talk effects between active and passive Si composite electrode components

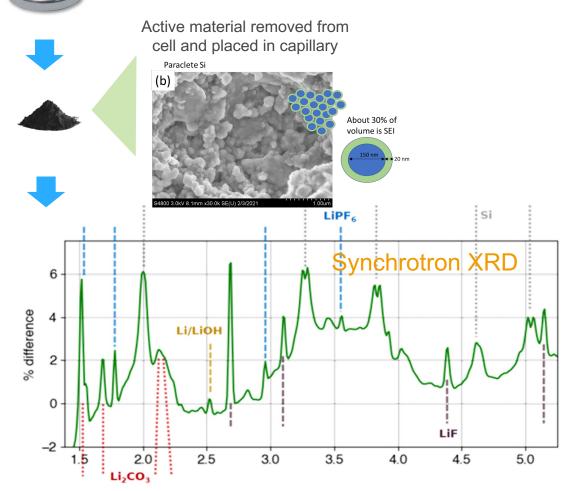

II. Determine Si electrode design principles to address performance challenges

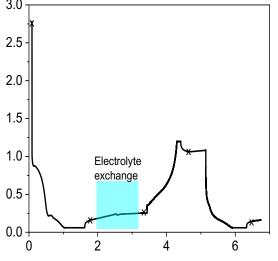
 Propose Si electrode modifications with regard to specific challenges, e.g., surface reactivity, electrochemical reactions kinetics, transport and mechanical properties etc.

THE SILICON CONSORTIUM PROJECT

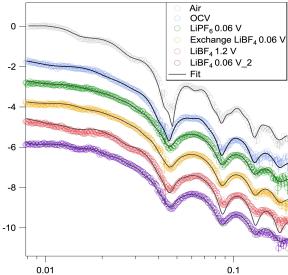
NON-PASSIVATING BEHAVIOR OF SI IN ORGANIC CARBONATE **ELECTROLYTES**

- With increased cycling number, Si particles decrepitate with pores filled with the electrolyte decomposition products
 - Local elemental analysis: Si = red, SEI (C, O, F, P, N) = blue, and Si/SEI = green
- Parasitic reactions enthalpies and corresponding heat flows confirm irreversible loss of Li and electrolyte over the lifetime of the cell





SI ELECTRODE SURFACE REACTIVITY AND SEI COMPOSITION AND STRUCTURE I

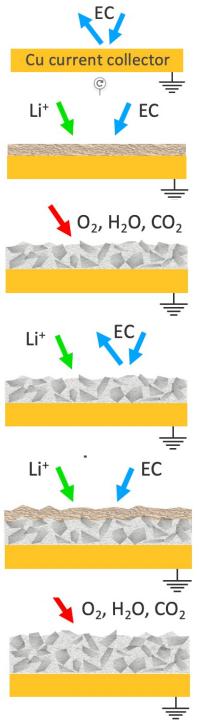


- SEI components include Li₂CO₃, LiF, POF₃, and LiPF₆ (unidentified peaks still remain)
- Need to quantify mass fractions of crystalline SEI species for different stages of SEI (re)formation

Electrochemical profile showing lithiation then exchange of electrolyte by adding boron tag

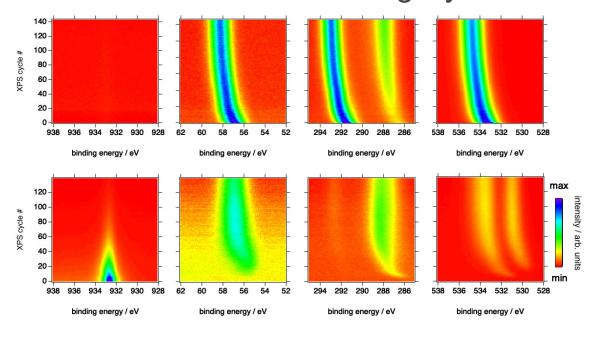
Neutron reflectivity spectroscopy reveals that PF_x component is easily removed from SEI with solvent exchange

Loss of PF_x in SEI layer enables self-discharge of the Si electrode



SI ELECTRODE SURFACE REACTIVITY AND SEI COMPOSITION AND STRUCTURE II

Native point-defect calculations predict that increasing Li chemical potential increases electronic conductivity via Li_i^+ shallow donor


Wang et al., npj Computational Materials 2018 4:15, Shi et al., J. Phys. Chem. C 2013, 117, 8579

Similar effects might occur with other SEI constituents

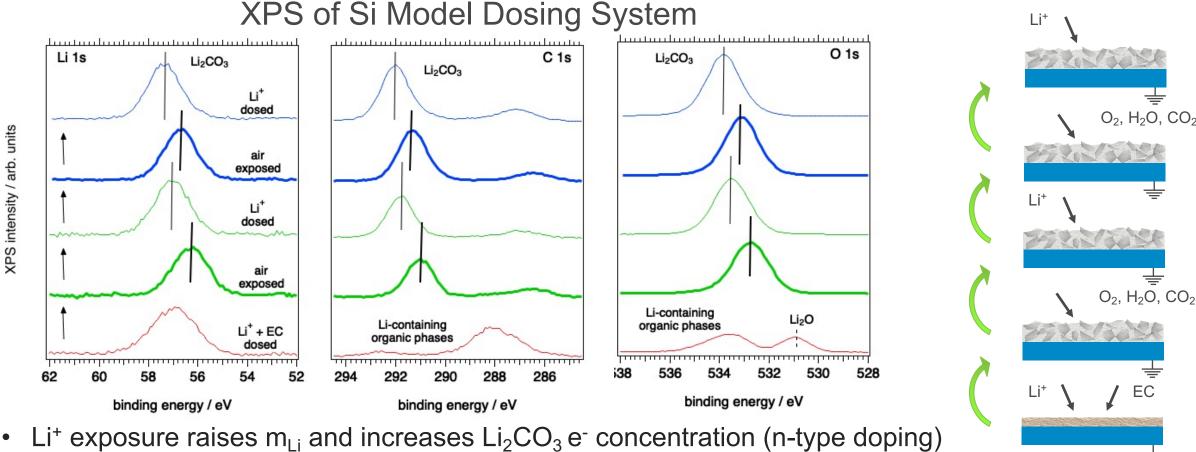
Higher μ_{Li} on Li_xSi vs. LiC₆ anodes might be a root cause of poor calendar life.

In situ dosing with Li⁺ and EC enables tests of μ_{Li} effects on electronic properties via binding-energy shifts

XPS of Si Model Dosing System

- *In situ* Li⁺ + EC dosing forms Li-organics layer
- Ex situ air exposure converts film to Li₂CO₃
- In situ Li⁺ + EC dosing probes Li₂CO₃ conductivity;
- Li-organics growth begins ~ cycle 20

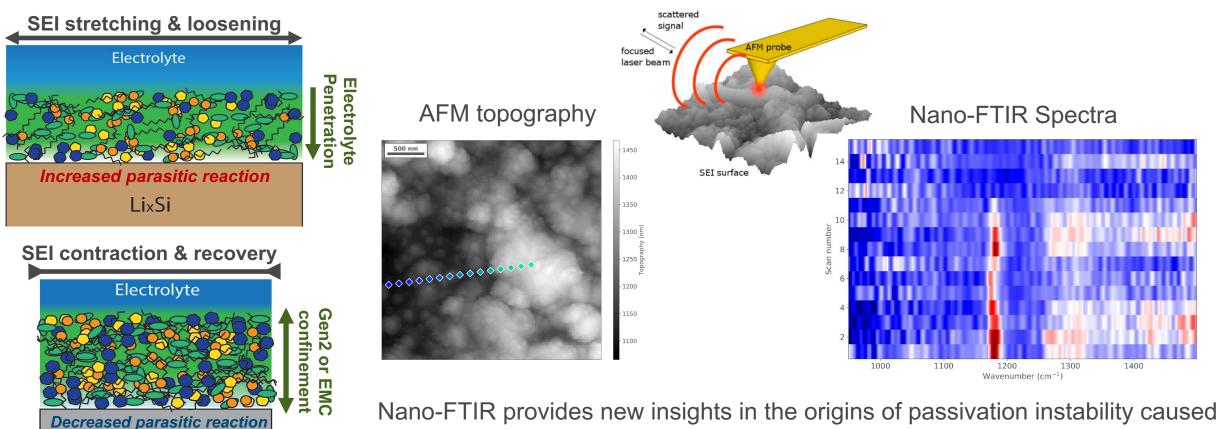
Li-organic phase(s) form on Li₂CO₃ only after Li⁺ exposure increases its electrical conductivity.



SI ELECTRODE SURFACE REACTIVITY AND SEI COMPOSITION AND STRUCTURE III

- Subsequent air exposure re-oxidizes film, decreases e- concentration

Li₂CO₃ becomes more conductive at high m_{Li} and facilitates electrolyte reduction

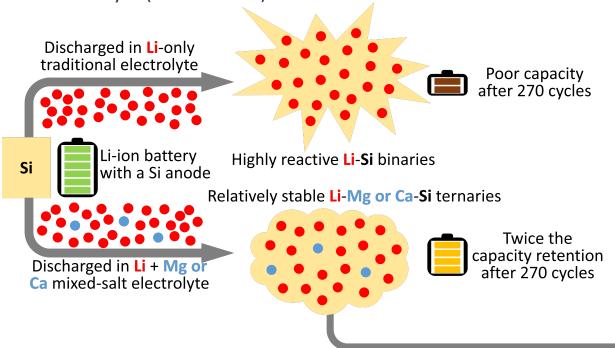


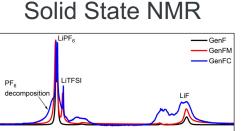
SI ELECTRODE SURFACE REACTIVITY AND SEI COMPOSITION AND STRUCTURE IV

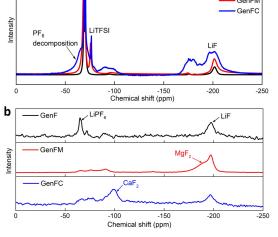
- Nano-FTIR provides new insights in the origins of passivation instability caused by the SEI mechanical deformation upon lithiation/delithiation of Si
- EMC confinement in the SEI occurs during mechanical deformation of the surface film

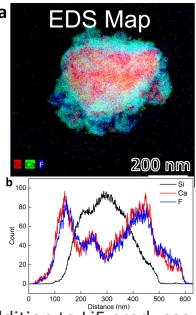
Si

• Nano-FTIR reveals inhomogeneous distribution of EMC in the SEI: EMC is trapped mostly in the thinner part of SEI.


12 (See poster bat499)


| Comparison of EMC in the SEI: EMC is trapped mostly in the thinner part of SEI.


NEW SI ELECTRODE DESIGN PRINCIPLES TO ADDRESS PERFORMANCE CHALLENGES I


Ternary Zintl Phases to stabilize Silicon

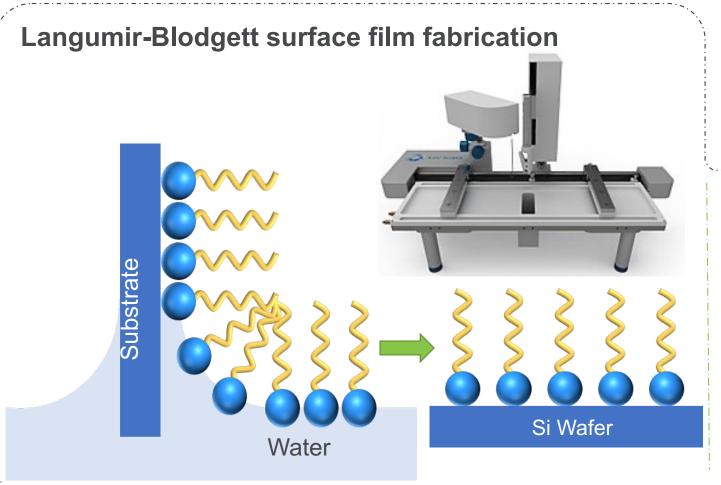
- More stable metal silicide phases formed via a simple salt additive to improve calendar life and cycle life
- 0.1M Mg(TFSI)₂ or Ca(TFSI)₂ additives, denoted as GenFM or GenFC formulations perform better over the baseline GenF electrolyte (=Gen2 + FEC)

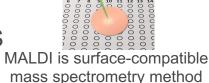
- CaF₂ (or MgF₂) formation in addition to LiF produces a thinner and robust SEI layer
- Coupled with formation of thermodynamically stable ternary phases, the new SEI improves silicon calendar life GenFC

Si core with ~ 4 % Ca

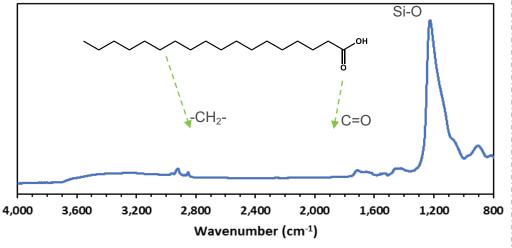
Dense Ca compound layer consist of nanocrystals (mainly CaF₃)

ssNMR + HRXRD + PDF + TEM + XPS




NEW SI ELECTRODE DESIGN PRINCIPLES TO ADDRESS PERFORMANCE CHALLENGES II

An ASEI presenting electrolyte-repellent surface and Li⁺-permeable channels can properly passivate the electrode surface by minimizing electrolyte side reactions while maintaining Li⁺ conductivity



Characterization

- STM/AFM
- FTIR/MALDI-TOF-MS
- CV/EIS/Cycling

FTIR of 1 layer of Stearic Acid on Si wafer

SUMMARY/ REMAINING CHALLENGES / FUTURE PLAN

- I. Use round robin electrodes and model systems for control and modification of physicochemical properties of SI/SEI/electrolyte interfaces and interphases
 - Determine key controls of electrode surface reactivity, SEI layer composition and structure
 - Understand the mechanism of SEI layer operation and function
 - Correlate interfacial properties with electrochemical behavior
- II. Develop and apply advanced characterization techniques, such as optical, X-ray, NMR spectroscopy and microscopy in combination with advanced electrochemical methods to determine function, operation and degradation of materials and Si electrodes in Li-ion battery cells.
- III. Design rational Si electrode design principles to address performance challenges
 - Correlate modifications to specific challenges, e.g. surface reactivity to electrolyte, volume change, "cracking, etc.
 - Design and study model electrodes with tailored interfaces to control the kinetics i.e., rate and selectivity of interfacial processes.

COLLABORATION AND ACKNOWLEDGEMENTS

Support for this work from the Office of Vehicle Technologies, DOE-EERE, is gratefully acknowledged – Brian Cunningham, Steven Boyd, and David Howell

Alison Dunlop

Alzate Vargas, Lorena

Amy Marschilok

Andressa Prado

Andrew Colclasure

Andrew Jansen

Ankit Verma

Anthony Burrell

Arca Elisabetta

Baris Key

Bertrand Tremolet de Villers

Beth Armstrong

Brett Helms

Brett Lucht

Brian Cunningham

Byong Chae

Chai Engtrakul Chelsea Cates

Chan Fana

Chen Fang

Chongmin Wang

Chrissy Connor

Christopher Apblett

Christopher Johnson

Chun-Sheng (CS) Jiang

Chunsheng Wang

Daniel Abraham

David Arnot

David Hoelzer

Dennis Dees

Donal Finegan

Eric Allcorn

Eric Sivonxay

Fattebert, Jean-Luc

Fernando Urias-Cordero

Fulya Dogan

Gabriel Veith

Gao Liu

Glenn Teeter

Greg Pach

Guang Yang

Haiyan Croft

Hyungyeon Cha

Insun Yoon

Ira Bloom

Jack Deppe

Jack Vaughey

Jaclyn Coyle

Jagjit Nanda

Jason Zhang

Jie Xiao

John (Zhengcheng) Zhang

John Farrell

Joseph Quinn

Josephine McBrayer

Kae Fink

Katharine Harrison

Koffi Pierre Yao

Kristin Persson

Leah Rynearson

Lei Wang

Lisa Housel

Lu Zhang

M. Katie Burdette-Trofimov

Mallory Clites

Marco Tulio Fonseca

Rodrigues

Matt Keyser

Maxwell Schulze

Mike Carroll

Mingjian Wen

Minkyu Kim

Minok Park

Nathan Neale

Noah Johnson

Peter Faguy

Peter Weddle

Ritesh Uppuluri Robert Kostecki

Robert Sacci

Sam Roger

Samm Gillard

Sang-Don Han

Sanpei Zhang

Samper Zmang

Sarah Frisco

Simon Thompson

Stephen Trask

Steve Harvey

Thomas Malkowski

Tien Duong

Trevor Martin

Vassilia Zorba

Wenquan Lu

Xiang Li

Yeyoung Ha

Yueran Gu

